

		_										100	90		iiv.	1,51	1,30		157			100	100	-	
	١	п	3	٠	r		31	~		٠1	ŀά	e	Ċ	1	c	c	^	æ.	~	и		^	М	. +	٠
ı	٦	/	a	U	1	16	31	ш	IC	11	Lŧ	L	Э	 ٠.	3	3	┖	3	3	11	ı	C		L	

GEOMETRY - Properties of shapes / Position and direction

1 In the space below, draw a square with sides of **7 cm**. Use your ruler and set square (or protractor). Label the length of each side.

2 In the space below, draw an isosceles triangle, with a base of **9 cm** and an angle of **45°** at either side of the base.

The shaded square shows the base of each shape.

Circle the net which will <u>not</u> make an open cube.

2 marks

Put the following quadrilaterals in the correct box in the table below. One has been done for you.

square	rectangle	kite	trapezium				
only 1 pair of opposite parallel sides	opposite sides equal	all sides equal	2 pairs of equal, adjacent sides				
		square					

hexagon 360°

2 marks

6 Find the size of the missing angle A in the shapes below.

$$\mathbf{A} = \begin{bmatrix} \mathbf{O} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} \mathbf{O} \\ \mathbf{A} \end{bmatrix}$$

Look at this formula; **diameter** = $2 \times radius$ ($d = 2 \times r$). Use this formula to solve the following.

d =
$$2 \times 19 \text{ cm}$$
 so d = cm

 $50 \, \text{cm} = 2 \, \text{x} \, \text{r}$ so r = cm

2 marks

Calculate the size of angle A in the diagram below.

$$A =$$

Look at the diagrams below. Calculate the size of the missing angles.

$$\mathbf{B} =$$

2 marks

Points A, B, C are 3 corners of a parallelogram.

What are the co-ordinates of the **4**th corner (**D**)?

Plot the points below onto the full co-ordinate grid. Join the dots to make a rectangle.

$$(-4,5)$$

$$(-4, -5)$$

$$(4,-5)$$

2 marks

On the grid below, sketch the position of the triangle after it has been translated **6** units up and **7** units to the right.

Reflect the triangle into the first quadrant on the co-ordinate plane below.

2 marks

End of Test

Page Total

TEST TOTAL

30

PERCENTAGE SCORE